Rome 2015-03-24

Clustering of chiral particles in flows with broken parity invariance
 K. Gustavsson ${ }^{1)}$, L. Biferale ${ }^{1)}$

1) Department of Physics, University of Tor Vergata, Italy

Motion of an 'isotropic helicoid'

Equations for velocity v and angular velocity ω for small isotropic helicoid:

Happel \& Brenner, Low Reynolds number hydrodynamics (I963)

$$
\begin{aligned}
\dot{\boldsymbol{v}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v}+\frac{2 a}{9} C_{0}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})\right] \\
\dot{\boldsymbol{\omega}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\frac{10}{3}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})+\frac{5}{9 a} C_{0}(\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v})\right]
\end{aligned}
$$

u Fluid velocity
Ω Half fluid vorticity
τ_{p} Particle relaxation time
$a=\sqrt{5 I_{0} /(2 m)}$ Particle 'size' (defined by mass m and moment of inertia I_{0}) C_{0} Helicoidality
Equations break spatial reflection symmetry (Ω and ω pseudovectors)

Dimensionless parameters

Stokes number $\quad \mathrm{St} \equiv \frac{\tau_{\mathrm{p}}}{\tau_{\eta}} \quad$ Size $\quad \bar{a} \equiv \frac{a}{\eta} \quad$ Helicoidality C_{0}

$$
\text { with } \tau_{\eta} \text { and } \eta \text { smallest time- and length scales of flow. }
$$

Constraint on C_{0} :
Using $v_{ \pm}=v+B \omega, u_{ \pm}=u+B \Omega$ with $B \equiv \frac{a\left(21 \pm \sqrt{441+40 C_{0}^{2}}\right)}{10 C_{0}}$
The equations of motion becomes

$$
\begin{aligned}
& \dot{\boldsymbol{v}}_{+}=\frac{1}{\tau_{\mathrm{p}}} \frac{39+\sqrt{441+40 C_{0}^{2}}}{18}\left(\boldsymbol{u}_{+}-\boldsymbol{v}_{+}\right) \\
& \dot{\boldsymbol{v}}_{-}=\frac{1}{\tau_{\mathrm{p}}} \frac{20\left(27-C_{0}^{2}\right)}{9\left(39+\sqrt{441+40 C_{0}^{2}}\right)}\left(\boldsymbol{u}_{-}-\boldsymbol{v}_{-}\right)
\end{aligned}
$$

Solution blows up unless $-\sqrt{27}<C_{0}<\sqrt{27}$
St and \bar{a} constrained by particle density higher than that of the fluid and geometrical size must be smaller than η.

Example of an isotropic helicoid

Recipe from Lord Kelvin:
"An isotropic helicoid can be made by attaching projecting vanes to the surface of a globe in proper positions; for instance cutting at 45° each, at the middles of the twelve quadrants of any three great circles dividing the globe into eight quadrantal triangles."

Kelvin, Phil. Mag. 42 (I87I)

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
Start with a sphere

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
Draw 3 great circles

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
Identify 12 vane positions at midpoints of quarter-arcs

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
\checkmark Identify 12 vane positions at midpoints of quarter-arcs
Put a vane on each vane position (45° to arc line)

Chirality

In a constant flow u, the isotropic helicoid starts spinning around the flow direction with angular velocity ω.
The spinning direction depends on the chirality of the vanes.

Clustering at small St

Expand compressibility of particle-velocity field $\nabla \cdot v$ to first order in St

$$
\nabla \cdot \boldsymbol{v}=-\frac{27}{27-C_{0}^{2}} \tau_{\mathrm{p}}\left[\operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}}\right)-\frac{1}{15} \operatorname{aC}_{0} \operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right]
$$ Maxey, J. Fluid Mech. I 74 (I987)

Reflection-invariant systems have $\left\langle\operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle=0$ Isotropic helicoids violate that relation $\left\langle\operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle \propto \tau_{\mathrm{p}} \mathrm{C}_{0}$ Same for parity-breaking flows $\left\langle\operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle \propto \tau_{\mathrm{p}} \mathrm{K}$

Helicity parameter K

$$
\begin{aligned}
& K>0 \text { Right-handed structures }(u \cdot \Omega>0) \text { more common } \\
& K<0 \text { Left-handed structures }(u \cdot \Omega<0) \text { more common }
\end{aligned}
$$

Clustering at small St in random flow

$$
\begin{aligned}
\mathrm{Ku} \equiv \frac{u_{0} \tau_{\eta}}{\eta} & =0.1 \\
\bar{a} & =1
\end{aligned}
$$

 Gustavsson \＆Mehlig EPL 96 （201I）

引三ミ三ミSmall－St limit

O Spherical particle（ $C_{0}=0$ ）in neutral flow
\square Right－handed particle（ $C_{0}=3$ ）in left－handed flow
\diamond Right－handed particle（ $C_{0}=3$ ）in neutral flow
Δ Right－handed particle（ $C_{0}=3$ ）in left－handed flow

Dipartimento di Fisica

Clustering at small St in random flow

$$
\begin{aligned}
& \langle\boldsymbol{\nabla} \cdot \boldsymbol{v}\rangle \tau_{\eta}=-\frac{27 \mathrm{Ku}^{4} \mathrm{St}^{2}}{13\left(27-C_{0}^{2}\right)\left(27\left(10+13 \mathrm{St}+3 \mathrm{St}^{2}\right)-10 C_{0}^{2}\right)^{3}}\left[\frac{6656}{5 \pi} \bar{a}^{2} C_{0}^{2} K^{2}\left(27-C_{0}^{2}\right)\left(27\left(10+39 \mathrm{St}+15 \mathrm{St}^{2}\right)-10 C_{0}^{2}\right)\right. \\
& -192 \bar{a} C_{0} K \sqrt{2 / \pi}\left(1300 C_{0}^{4}-27 C_{0}^{2}\left(2600+5070 \mathrm{St}+2457 \mathrm{St}^{2}+324 \mathrm{St}^{3}\right)+729\left(1300+5070 \mathrm{St}+4654 \mathrm{St}^{2}+1845 \mathrm{St}^{3}+351 \mathrm{St}^{4}+27 \mathrm{St}^{5}\right)\right) \\
& +4550 \bar{a}^{2} C_{0}^{6}+852930(10+3 \mathrm{St})^{3}\left(1+3 \mathrm{St}+\mathrm{St}^{2}\right)-45 C_{0}^{4}\left(21 \bar{a}^{2}\left(260+507 \mathrm{St}+195 \mathrm{St}^{2}+18 \mathrm{St}^{3}\right)-20\left(1300+27 \mathrm{St}^{3}\right)\right) \\
& \left.+243 C_{0}^{2}(10+3 \mathrm{St})\left(21 \bar{a}^{2}\left(65+234 \mathrm{St}+247 \mathrm{St}^{2}+87 \mathrm{St}^{3}+9 \mathrm{St}^{4}\right)-10\left(2600+4290 \mathrm{St}+1677 \mathrm{St}^{2}+261 \mathrm{St}^{3}+27 \mathrm{St}^{4}\right)\right)\right]
\end{aligned}
$$

